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Abstract

In this paper, we present a lattice Boltzmann method (LBM) to simulate weakly
ionized plasmas using physical properties for a wide range of electron number
densities. To preserve the convection–diffusion characteristics, this method is
based on two scaling rules: (1) the physical viscosity is equal to the lattice
viscosity, and (2) the characteristic flow velocity due to the external force
should not be altered by the scheme. Although this method has been developed
for plasma simulation, it can be applied to other fluid-flow problems. In this
study, the present method has been applied to driven cavity flow, Poiseuille flow
and the plasma diffusion under an external electric field. It has been shown
that this method is applicable to a wide range of electron number densities in
the simulation of weakly ionized plasmas.

PACS numbers: 47.11.−j, 52.65.−y, 52.25.Dg

1. Introduction

The lattice Boltzmann method (LBM) has been proved over the past 20 years to be an effective
numerical method for simulating fluid flows [1]. Due to its kinetic nature, relatively easy
implementation and intrinsic advantage for parallel computation, the LBM has been widely
used as an alternative numerical technique not only for ordinary fluid flows [2, 3] but also for
complex flow problems, such as nonideal fluid flows [4, 5], multiphase or multicomponent
flows [6, 7], flows through porous media [8, 9] and magnetohydrodynamic flows [10–12].
However, despite its close connection with the Boltzmann equation (which is the governing
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equation for plasma dynamics), only a very small number of LBMs have been developed for
plasma simulations [13, 14].

There are intrinsic difficulties in solving plasma problems with the LBM. In the LBM,
the lattice kinematic viscosity (which is obtained from the Chapman–Enskog expansion of the
lattice Boltzmann equation) is not generally equal to the real kinematic viscosity of the fluid.
For some simple flow problems (such as driven cavity flow), the fluid flow is determined solely
by a dimensionless number (such as the Reynolds number) and the actual properties of the
fluid (in this case kinematic viscosity) do not need to be used as long as the same characteristic
dimensionless number (Reynolds number) is maintained. However, in plasma problems,
actual physical properties need to be used because a particular dimensionless number does not
characterize the flow, and/or the flow is too complicated. In addition, plasmas are driven by
the electromagnetic force (Lorentz force), so the full Boltzmann equation with the acceleration
term needs to be solved. However, it has not been fully understood whether an additional
matching of parameters must be introduced for the acceleration term.

To overcome this problem, Li and Ki [14] introduced a rescaling method for weakly
ionized plasmas. With this rescaling scheme, the electrostatic phenomena of weakly ionized
helium plasmas with ionization degree of 1–3% and neutral number density of 1 × 1018 m−3

were successfully simulated. Numerical tests also showed that this rescaling scheme is valid
for neutral number densities roughly between 2 × 1017 m−3 and 5 × 1018 m−3 with the
ionization degree of 1%. However, this is a very narrow range of plasma number densities;
in reality, depending on the conditions of plasmas, the number density of plasmas may range
from 1 × 106 m−3 to 1 × 1033 m−3 and the temperature can be as high as 107 K. The relaxation
time as well as the transport properties of the plasma can vary significantly over such a wide
range of number densities and temperatures.

This paper presents a new and simpler rescaling scheme that can be used with physical
properties of fluids for a wide range of particle number densities in the simulation of weakly
ionized plasmas and fluid flows. Weakly ionized plasmas are especially important because
plasma-processing technology is vastly used in the fabrication of integrated circuits. Also,
plasmas appear in many high-energy manufacturing processes, such as laser welding and
pulsed laser deposition. The key idea of this study is to design a scheme in such a way that
the kinematic viscosity of the fluid and the characteristic velocity due to the external force
are matched in the LBM because, after all, the Boltzmann equation is a convection–diffusion
equation. Although this method is developed for plasmas, it can be applied to other flow
problems. Also, because this method is based on the authors’ previous work [14], this method
retains the second-order accuracy of the LBM, which was demonstrated in figure 7 of [14]. In
this paper, driven cavity flow, Poiseuille flow and plasma diffusion under externally applied
electric fields are simulated to validate the method. Simulation results agree very well with
the data from the literature and analytical solutions.

2. Mathematical model

2.1. A brief introduction to the LBM

The continuous Boltzmann equation has the following form:

∂f

∂t
+ v · ∇xf + a · ∇vf = Q(f, f ′), (1)

where f = f (x, v, t) is the single particle distribution function in the phase space, v is the
microscopic velocity, a is the acceleration of fluid particles caused by the external force, and
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Q(f, f ′) is the rate of change of the distribution function due to collisions. If the Bhatnagar–
Gross–Krook (BGK) model is used for the collision term, the following equation is obtained:

∂f

∂t
+ v · ∇xf + a · ∇vf = −f − f eq

λ
. (2)

Here, f eq is the equilibrium distribution function, and λ is the relaxation time. Note
that the simplification of the collision term by the BGK model is only valid for short-range
elastic collisions. In weakly ionized plasmas, since the number density of neutral particles is
much greater than that of charged particles, the collisions with neutral particles dominate the
process. Thus, we neglect the long-range Coulomb interaction between charged particles in
this study. In the standard LBM, equation (2) without the external force term is discretized
as [1]

fα(x + eα�t, t + �t) = fα(x, t) − fα(x, t) − f
eq
α (x, t)

τ
, (3)

where eα is the αth component of the discretized microscopic velocity on a lattice, and τ is the
dimensionless relaxation time. The desired macroscopic conservation equations, such as the
Navier–Stokes equation, can be recovered by the Chapman–Enskog expansion of the lattice
Boltzmann equation (equation (3)). The significance of this derivation lies in the fact that
some fluid properties, such as kinematic viscosity, can be retrieved from this derivation. The
kinematic viscosity obtained by this procedure [2, 15] will be called the lattice viscosity in
this paper.

2.2. Determining lattice sound speed and lattice acceleration

The first step of the rescaling procedure is to match kinematic viscosity. In the standard LBM,
the lattice viscosity is obtained as follows [2, 15]:

ν̃ = (τ − 0.5)√
3

θ̃�x, (4)

where �x is the grid spacing, and θ̃ is the lattice sound speed. (Here, a tilde is used for lattice
parameters.) To preserve the diffusion characteristic of the problem, it is assumed that the
lattice kinematic viscosity ν̃ is equal to the actual kinematic viscosity ν [16]:

ν = 8θ2λ

3π
. (5)

Here λ is the physical relaxation time, λ = 1/σn〈v〉 [16] (where σ is the collision cross
section, n is the number density of the fluid particles, and 〈v〉 is the average speed), and θ is
the physical sound speed:

θ =
√

kBT

m
, (6)

where kB is the Boltzmann constant, T is the temperature, and m is the molecular mass of
the fluid particle. From equations (4) and (5), the lattice sound speed θ̃ can be calculated as
follows:

θ̃ = 8θ2λ√
3π�x(τ − 0.5)

. (7)

From equation (7), we can define the rescaling parameter γ as

γ ≡ θ

θ̃
=

√
3π�x(τ − 0.5)

8θλ
, (8)
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following the definition given in the paper by Li and Ki [14]. Then the lattice sound speed is
expressed as a function of the rescaling parameter as follows:

θ̃ = θ

γ
. (9)

Note that the rescaling parameter γ is a function of �x, λ and θ , and therefore is fixed
once the type and condition of fluid (λ and θ ) and grid spacing (�x) are determined. Next,
the lattice relaxation time λ̃ is determined from the dimensionless relaxation time, λ̃ = τ�t ,
where the time step is �t = �x/

√
3θ̃ . Using equation (8), the lattice relaxation time λ̃ is

calculated as follows:

λ̃ = 8τγ 2

3π(τ − 0.5)
λ. (10)

Secondly, the convective property of the flow when an external force exists must not
be altered by the LBM scheme. If the flow is driven by an external force (such as an
electromagnetic force), depending on the nature of the force we may need another rescaling
to obtain accurate velocity fields. Therefore, we propose the second rescaling rule: the
characteristic velocity of the flow should not be changed by the rescaling, i.e.,

U0 = Ũ0, (11)

where U0 is the characteristic velocity of the flow. From this rule, we can obtain the rescaled
acceleration ã, which we call the lattice acceleration in this paper. Implementation examples
will be presented in the results section.

2.3. Choosing dimensionless relaxation time τ

This section provides a guideline to select the dimensionless relaxation time in conjunction
with the presented method. In this method, dimensionless relaxation time τ and grid spacing
�x are the two parameters that can be chosen freely. Once �x is determined, τ can be
selected considering the Mach number (Ma) and the Reynolds number (Re) of the problem.
The following equation is the relationship between the Re and Ma obtained from the definition
of Re:

Re =
√

3MaN

τ − 0.5
, (12)

where N is the number of grid points along the characteristic length L0, Ma = U0/θ̃ , where
U0 is the characteristic velocity. From equation (12), we obtain

τ =
√

3MaN

Re
+ 0.5, (13)

which must lie in the valid range. Note that according to Hou et al [17], there exists a critical
value of τ below which simulation results show unphysical patterns or the code diverges
even though τ is greater than 0.5. Equation (13) is especially useful when the fluid flow is
characterized by the Reynolds number, such as driven cavity flow. Given Ma and Re, τ can be
determined from equation (13). Also, the Mach number of the problem must be small enough
to meet the low Ma requirement. In the mean time, as will be shown in section 3.1, the LBM
converges faster with a higher τ .

In cases where Re is not important or is hard to define, the definition of Ma can be used
to choose τ :

Ma =
√

3π�xU0(τ − 0.5)

8θ2λ
, (14)
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from which the following is obtained:

τ = 8θ2λMa√
3π�xU0

+ 0.5. (15)

2.4. Implementing the LBM with lattice parameters

The first step in the implementation of the presented scheme is to determine the grid spacing
�x and the dimensionless relaxation time τ (following the method described in section 2.2)
and then the rescaling parameter γ according to equation (8) with physical properties of a fluid.
Then the lattice sound speed θ̃ and the lattice acceleration ã are determined from equations (9)
and (11), respectively. Once these lattice parameters are obtained, the remaining steps are the
same as the standard LBM.

Among various schemes for the discretization of the external force term, He et al’s method
[18] (a · ∇vf ≈ a · ∇vf

eq = − a·(v−u)

θ2 f eq, where u is the macroscopic velocity) is adopted
here. In addition, particle momentum is assumed to be conserved at each collision so that
the implicit-time treatment of the external force term can be avoided [18]. Then, the D2Q9
(two-dimensional nine-velocity) lattice Boltzmann equation with an external force is obtained
as

fα(x + eα�t, t + �t) = fα(x, t) − fα(x, t) − f
eq
α (x, t)

τ
+

�t ã · (eα − u)

θ̃2
f eq

α (x, t), (16)

where eα is the αth component of the discretized microscopic velocity:

eα =

⎧⎪⎨
⎪⎩

(0, 0) α = 0

(cos ϕα, sin ϕα)(
√

3θ̃ ) ϕα = (α − 1)π/2 α = 1, 2, 3, 4√
2(cos ϕα, sin ϕα)(

√
3θ̃ ) ϕα = (α − 5)π/2 + π/4 α = 5, 6, 7, 8.

(17)

The discretized equilibrium distribution function f
eq
α is expressed as [19]

f eq
α = ωαn

[
1 +

eα · u

θ̃2
+

(eα · u)2

2θ̃4
− u2

2θ̃2

]
, (18)

where ωα is 4/9 for α = 0, 1/9 for α = 1, 2, 3, 4, and 1/36 for α = 5, 6, 7, 8.
The macroscopic quantities can be obtained by taking proper moments of the distribution

function with respect to the microscopic velocity. In the LBM, the number density and the
macroscopic velocity are calculated as

n =
∑

α

fα, (19)

nu =
∑

α

eαfα. (20)

Note that unlike the rescaling method presented in [14], the number density and
macroscopic velocity do not need to be further transformed by inversely applying the rescaling
rules.

3. Results

3.1. Driven cavity flow: no external force

As the first validation problem, the two-dimensional driven cavity flow [20] is considered. In
this problem, no external force appears in the lattice Boltzmann equation, and therefore, only
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Figure 1. Locations of the primary vortices at different Reynolds numbers.

Table 1. Simulation of driven cavity flow with physical properties of air without the present
rescaling method.

T (K) p (atm) ν (m2 s−1) τ Ma Re Result

Case 1 300 1 1.8245 × 10−5 0.500 014 1.24 × 10−4 200 Unstable
Case 2 1500 1 × 10−5 20.399 7.394 6.22 200 Unstable

Table 2. Simulation of driven cavity flow with physical properties with the presented rescaling
method. (Air conditions are given in table 1).

Re Ma τ γ No of iterations

Case 1 200 9.021 × 10−2 0.6 7252.43 203 80
Case 2 200 9.021 × 10−2 0.6 1.45 × 10−2 20 380

the first rescaling rule is employed to obtain the lattice sound speed and the acceleration is not
rescaled. The governing equation for this flow is equation (16) without the external force term.
The cavity is 1 m × 1 m in size and a 128 × 128 grid is used. We terminated the computation
when the maximum relative error of the distribution function between two successive time
steps is less than 1 × 10−6.

To show the capabilities of the rescaling scheme, driven cavity flow is simulated for two
different conditions of air. Table 1 shows the properties of air, and Re is selected to be 200 for
both cases. As expected, the LBM fails in both cases without the rescaling. However, both
cases are simulated correctly by using the rescaling scheme. Table 2 lists the parameters used
in the simulations with the rescaling and the numbers of iterations until convergence. Note
that Ma and τ are in the reasonable range.

Next, we simulate the driven cavity flow problem at several different Re using the
properties used in case 1 (in table 1) with the rescaling. The main simulation parameters
are listed in table 3. Figure 1 presents the locations of the primary vortices at different Re, and
figure 2 shows the velocity profiles along the central lines at two different Reynolds numbers
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(a)

(b)

Figure 2. Velocity profiles along the central lines of the computational domain. (a) Dimensionless
x-velocity (b) dimensionless y-velocity.

(200, 5000). A primary vortex is the largest vortex located near the center and is directly
created by the motion of the lid; in contrast, secondary vortices are located at the corners and
are driven by the primary vortex. As seen, flow patterns are in good agreement with the results
reported in [17] and [20]. In figure 2, we can see that the error at Re = 5000 is relatively
large, which can be explained by the high Ma (Ma = 0.564) resulting from Re = 5000 and
τ = 0.525 as shown in table 3. According to equation (12), there are two ways to reduce the
Ma when Re is large. One way is to decrease τ . But unfortunately, there is a lower limit of
τ due to the nature of the LBM. The closer the value of τ is to 0.5, the more likely the code
will be unstable. The other way is to increase the grid density for the simulation. This is
the most straightforward way to solve this problem in a moderate range of Re but, of course,
will increase the computational expense. Besides these two methods, there is another way to
reduce Ma, i.e., the use of an interpolation scheme after the collision-streaming steps in the
LBM [21].

7
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Table 3. Simulation parameters for air at 300 K and 1 atm (case 1).

Re Ma τ γ

100 0.1 0.72 15 955.35
200 0.0902 0.6 7252.43
500 0.113 0.55 3626.22

1000 0.113 0.525 1813.11
2000 0.225 0.525 1813.11
5000 0.564 0.525 1813.11

3.2. Poiseuille flow

As the second example, the Poiseuille flow is simulated, where the constant pressure gradient
dp/dx is treated in the acceleration term of the lattice Boltzmann equation, a = [− 1

ρ

dp

dx
, 0

]
,

and therefore, both the rescaling rules must be applied. The analytical solution can be easily
obtained:

v =
[
− 1

ρν

dp

dx
y

(
H − y

2

)
, 0

]
. (21)

The walls are located at y = 0 and y = 2H , and ρ is the density of the fluid. The choice
of the lattice sound speed by the first rule is explained in section 2.1. To apply the second
rule, the characteristic velocity must be identified, which is the maximum velocity along the
centerline and can be obtained from equation (21) as follows:

U0 =
[
− H 2

2ρν

dp

dx
, 0

]
= aH 2

2ν
. (22)

From the second rule, this velocity should not be changed by the rescaling, so we have

aH 2

2ν
= ãH 2

2ν̃
. (23)

Since ν̃ = ν from the first rescaling rule, we can find that ã = a, which means for
Poiseuille flow, no rescaling is required for the acceleration term.

For the numerical test, air at 300 K and 1 atm is considered and 8.898 × 10−5 N m−3 is
used for dp/dx. A 1 m × 0.125 m domain is used (H = 0.0625 m) and the grid density is
256 × 32. The dimensionless relaxation time is selected as τ = 0.6. Figure 3 shows the
simulated steady-state velocity profile with the analytical solution (equation (21)). Apparently,
the simulation result obtained by the rescaling scheme agrees very well with the analytical
solution.

3.3. Weakly ionized plasmas under external electric fields

The present rescaling scheme can be applied to weakly ionized isothermal plasmas. In fact,
the numerical method used in this section is the same as that proposed in [14] except the
rescaling scheme part, so only a brief description about the method will be given in this paper.
Unlike the method given in [14], the current scheme rescales only θ̃ and ã, and dimensionless
relaxation time τ is chosen following the guidelines presented in section 2.2. In addition, no
inverse rescaling is needed to obtain density and velocity. This method extends the capabilities
of the previous scheme [14] to a much wider range of plasma conditions.

In this paper, we simulate the electron diffusion problem under an externally applied
electric field by neglecting the internally generated electric field because, in this case,
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Figure 3. Steady-state velocity profile of the Poiseuille flow.

the analytical solution is available. Inclusion of the internally generated electric field is
straightforward and will not be considered here. The details on the problem, such as domain
size and grid density, can be found in [14]. For electrostatic plasmas, the acceleration due to
the Coulomb force is as = qsE/ms , where E is the electric field, qs is the charge of species s
(s = e, i, n), and ms is the mass of species s.

If the initial electron distribution is Gaussian and the maximum degree of ionization is 1%,
the temporal and spatial distribution of the electron number density is calculated analytically
as

nA
e (x, y, t) = 0.01nn0

(1 + t/t0)
exp

[
− (x − xc − vdt)

2 + (y − yc)
2

r2(1 + t/t0)

]
, (24)

where t0 = r2/4D, r = 0.290 mm, (xc, yc) represents the center point of the initial Gaussian
distribution of electrons, and the diffusivity D can be calculated from [16]

D = 〈ve〉2 λen

3
, (25)

where 〈ve〉 = √
8/πθe and θe = √

kBTe/me is the electron sound speed, and λen = 1/σennn〈ve〉
is the relaxation time due to the collisions between electrons and neutrals where σen is the
collision cross section. In equation (24), vd is the magnitude of the electron drift velocity vd

due to the external electric field, which is calculated as follows [22]:

vd = −eE0

me

λen = aeλen. (26)

In this problem, the second rule must be applied to rescale the acceleration term. Because
the drift velocity is the characteristic velocity due to the electric field in this case, i.e., U0 = vd ,
from equation (11) and equation (26) the following equation can be obtained:

aeλen = ãeλ̃en, (27)

from which the acceleration due to the external force is rescaled as follows:

ãe = 3π(τ − 0.5)

8τγ 2
ae, (28)
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Table 4. Simulation parameters used for the plasma diffusion problem.

nn0 (m−3) Te (eV) τ γ E0 (V m−1) Error

1 × 1016 0.7005 1.5 9.686 × 10−9 14 226.72 1.494 × 10−6

1 × 1018 0.8008 1.5 9.686 × 10−7 16 270.90 1.495 × 10−6

1 × 1020 0.9343 1.5 9.686 × 10−5 18 975.84 1.494 × 10−6

1 × 1022 1.1186 1.5 9.686 × 10−3 22 731.20 1.495 × 10−6

1 × 1024 1.3891 1.5 0.9686 28 288.26 1.498 × 10−6

1 × 1026 1.820 1.5 96.86 58 822.30 2.343 × 10−6

where equation (10) is used to replace λ̃en. Note that this time the lattice acceleration is different
from the physical acceleration because unlike the Poiseuille flow case the characteristic velocity
is a function of the relaxation time (see equation (26)).

Assuming that the plasma is singly ionized, the lattice Boltzmann equations are written
separately for electrons, ions and neutrals as follows [14]:

f α
e

(
x + eα

e �t, t + �t
) = f α

e (x, t) − 1

τen

[
f α

e (x, t) − f eq,α
en (x, t)

]
+

�t ãe · (
eα
e − ue

)
θ̃2

e

f eq,α
e ,

(29)

f α
i

(
x + eα

i �t, t + �t
) = f α

i (x, t) − 1

τin

[
f α

i (x, t) − f
eq,α

in (x, t)
]

+
�t ãi · (

eα
i − ui

)
θ̃2

i

f
eq,α

i

, (30)

f α
n

(
x + eα

n�t, t + �t
) = f α

n (x, t) − 1

τnn

[
f α

n (x, t) − f eq,α
nn (x, t)

]
, (31)

where τsn is the dimensionless relaxation time for the collisions between species s and neutrals,
θ̃ s is the lattice sound speed of species s, and f

eq,α
sn is the discretized equilibrium distribution

function for the collisions between species s and neutrals:

f eq,α
sn = ωαns

[
1 +

eα
s · usn

θ̃2
s

+

(
eα
s · usn

)2

2θ̃4
s

− u2
sn

2θ̃2
s

]
. (32)

Here, ns is the number density of species s, and usn is the barycentric velocity of the
binary collision with the neutral particles:

usn = ρsus + ρnun

ρs + ρn

, (33)

where us and ρs are macroscopic velocity and mass density of species s, respectively. Note
that even with only a 1% ionization degree, collisions with charged particles may not be
negligible because the collision cross sections for the collisions between charged particles
could be much larger than those for the collisions with neutral particles [23–25]. In such a
case, equations (29) and (30) need to be modified accordingly. Because this paper is focused
on the LBM for the Boltzmann equation with a BGK collision term, those possibilities will
not be considered in this study.

Table 4 lists initial neutral number density (nn0), electron temperature (Te) and other
parameters used for the simulation. Here, Te is obtained from the Saha equation [26]
corresponding to the 1% ionization degree and the electric field E0 directs from left to right.
The dimensionless relaxation time τ is set to 1.5 for all the calculations.

10
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(a)

(b)

Figure 4. Electron number density distributions with the analytical solutions: (a) nn0 =
1 × 1016 m−3 at t = 3.36 × 10−16 s, (b) nn0 = 1 × 1026 m−3 at t = 1.433 × 10−6 s.

In this paper, a wide range of neutral number density (from 1 × 1016 to 1 × 1026 m−3) is
considered. In figure 4, electron number density distributions at later times are plotted together
with the analytical solution (equation (24)) for two different initial neutral density values (1 ×
1016 and 1 × 1026 m−3). The simulation errors for six different initial number density values
are listed in table 4 using the following formula [14]:

error =
√√√√∑

i,j

[
nLB

e (i, j, t) − nA
e (xi, yj , t)

nA
e (i, j, t)

]2/
mn, (34)

where m and n are numbers of grid points in x and y directions, respectively, nLB
e (i, j, t) is the

electron number density at node point (i, j ) obtained by the simulation, and nA
e (xi, yj , t) is the

electron number density at the corresponding space point by equation (24). As clearly shown
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from figure 4 and table 4, the present rescaling scheme gives good results for the electron
diffusion problem for a wide range of electron number density.

4. Conclusion

In summary, a rescaling scheme has been proposed by which the LBM with an external force
term can be used with physical properties of fluids. This scheme only rescales the sound
speed and the acceleration term due to external forces based on the following two rules: (1)
the physical viscosity is equal to the lattice viscosity, and (2) the characteristic velocity due to
the external force is not affected by the rescaling scheme. For validation purposes, the present
scheme has been applied to the lid-driven cavity flow (where no external force is involved), the
Poiseuille flow (where acceleration is not changed by the rescaling) and the plasma diffusion
problem due to an externally applied electric field (where the acceleration is changed by
the rescaling). Simulation results agree well with the data available in the literature and the
analytical solutions to the electron diffusion problem. In particular, this scheme can be applied
to a wide range of number densities in plasma simulations.
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